Magnetometer and Magnetic Field Sensors

Magnetometers are essential instruments in UAVs and unmanned systems, used for detecting and measuring magnetic fields. These devices provide precise navigation and orientation, allowing platforms to accurately interpret the earth's magnetic properties and other nearby magnetic fields. Various types of magnetometers, including 3-axis models, offer different capabilities suited for diverse applications.
Overview Magnetometer and Magnetic Field Sensors
By Mike Ball Last updated: February 11th, 2025

Magnetometers and magnetic field sensors are widely used in unmanned aerial vehicles (UAVs), unmanned underwater vehicles and other robotic systems for applications such as navigation, geophysical surveying, and scientific research. They provide accurate data for tasks ranging from precise navigation to the detection of magnetic anomalies, and enable systems to operate effectively in magnetic field-sensitive environments.

Table of Contents:

What is a Magnetometer?

A magnetometer is a sensor designed to measure the strength, direction, or fluctuations of magnetic fields. They are typically used by drone and robotics platforms to ensure robust navigation in GPS-deprived areas, as well as for survey applications such as monitoring magnetic interference and conducting scientific research.

Magnetometers are available in several forms, ranging from basic models used in consumer devices to highly sensitive systems designed for industrial, military, or scientific applications. They are often used in conjunction with other sensors, such as inertial measurement units (IMUs) and GNSS receivers, to provide comprehensive data for precise control and navigation. Their capability to measure magnetic fields with extreme precision also makes them indispensable for advanced applications such as magnetic mapping, mineral exploration, and subsurface object detection.

How Does a Magnetometer Work?

Magnetometers operate by detecting changes in magnetic fields and converting those measurements into readable data. They rely on different principles depending on their type. Common designs include fluxgate, Hall-effect, and optically pumped magnetometers, each with its own operational characteristics and benefits.

  • drone magnetometer by UAV Navigation

    MG01 Drone Magnetometer by UAV Navigation

    Fluxgate Magnetometers: These are widely used in unmanned platforms due to their compact size, high sensitivity, and relatively low power consumption. A fluxgate magnetometer measures magnetic fields by detecting changes in the magnetic flux passing through its core.

  • Hall-Effect Magnetometers: Based on the Hall effect, these devices measure the voltage generated when a conductor is exposed to a magnetic field. They are popular in robotics and UAVs for applications requiring moderate sensitivity and cost-effective designs.
  • Optically Pumped Magnetometers: These advanced sensors use optical techniques to measure magnetic fields with extremely high precision. They are primarily used in scientific research or defence applications where accuracy is of particular importance.

Magnetometers typically provide raw data that must be processed to correct for interference caused by electronic components or environmental factors. Advanced algorithms are used to filter and calibrate this data, ensuring reliable magnetic field measurements even in challenging operating conditions.

Types of Magnetometer

Magnetometers are available in several types, each suited to different applications and operational requirements. Selecting the right magnetometer depends on factors such as sensitivity, accuracy, and environmental conditions. Below are the most common types of magnetometers used in unmanned systems:

Scalar Magnetometers

These sensors measure the total magnetic field strength without detecting direction. They are commonly used in geophysical surveys, where high sensitivity to field changes is necessary for detecting mineral deposits or mapping subterranean structures.

Vector Magnetometers

These measure both the direction and strength of magnetic fields, making them ideal for UAVs, drones, and robotics requiring precise orientation and heading information.

3 Axis Magnetometers

These versatile sensors measure magnetic fields along three axes, providing comprehensive field data for mapping, navigation, and scientific analysis.

For unmanned systems, 3-axis magnetometers are particularly valuable as they measure magnetic fields in all three dimensions, enabling platforms to accurately determine orientation and detect subtle magnetic variations. These sensors are essential for platforms operating in dynamic environments, such as drones conducting magnetic surveys or underwater vehicles detecting submerged objects.

What is a Magnetometer used for by Drones & Robotics?

Some of the most significant applications of magnetometers in the drone and unmanned systems sectors include:

Navigation and Orientation

3 axis magnetometer

Veronte MEX 3 Axis Magnetometer by Embention

For UAVs and drones, magnetometers can be used to provide accurate heading data, and are particularly critical in environments where GPS signals are degraded or unavailable, such as urban canyons, forests, or underground tunnels. Magnetic field measurements are combined via sensor fusion with data from gyroscopes and accelerometers to achieve robust heading outputs.

Magnetometers can also be used to determine orientation of the drone relative to magnetic north, and thus to provide estimation of yaw angle.

Geophysical and Magnetic Surveys

Magnetometry is widely used in geological surveys to detect mineral deposits, map fault lines, and monitor volcanic activity. UAVs equipped with 3-axis magnetometers can rapidly collect high-resolution magnetic field data over large areas, offering a cost-effective and efficient alternative to traditional survey methods. These drones are also employed in environmental monitoring to assess magnetic field disturbances caused by human activity or natural events.

Subsurface Object Detection

In robotics and underwater systems, magnetometers are used to locate metallic objects buried underground or beneath the seabed. Applications include detecting unexploded ordnance (UXO), underwater pipelines, shipwrecks, and other submerged infrastructure. Autonomous underwater vehicles (AUVs) equipped with magnetometers can perform precise detection and mapping in challenging underwater environments.

Defense and Security

In military applications, drone magnetometers are used for surveillance, reconnaissance, and detecting hidden or camouflaged objects. Magnetometers can sense the presence of ferromagnetic materials, making them useful for identifying vehicles, weapons, or other metallic objects in the field. They are also employed in electronic warfare to monitor and analyse magnetic field disturbances caused by hostile systems.

Scientific Research and Magnetic Field Analysis

Magnetometers play a vital role in scientific research, particularly in studying Earth’s geomagnetic properties and tracking space weather phenomena. UAVs and other unmanned systems equipped with magnetometer sensors can conduct long-term studies of magnetic field changes, enabling breakthroughs in fields like seismology, climatology, and astrophysics.

Magnetometer Considerations for Unmanned Systems

Integrating magnetometers into unmanned platforms comes with unique engineering challenges. Magnetic interference from onboard electronics, motors, and batteries can distort readings, necessitating careful sensor placement and shielding. Advanced calibration techniques and software-based compensation algorithms are essential to ensure accurate magnetic field measurements in real-world environments.

Unmanned platforms often operate in harsh conditions, requiring magnetometers to be rugged. Being lightweight and power efficient are also critical requirements for SWaP-limited platforms. Engineers must carefully balance these factors when designing systems for specific applications. For example, a UAV conducting high-altitude surveys needs a low-power, lightweight magnetometer, while an AUV operating in deep-sea environments may require a highly sensitive, pressure-resistant sensor.

Products (2)

MG01 Magnetometer

Self-contained magnetometer for dynamic UAV applications

Self-contained magnetometer for dynamic UAV applications
...self-contained magnetometer designed to provide precision 3D magnetic field readings under highly...
Veronte MEX

Three-axis magnetometer for drones & autonomous vehicles

Three-axis magnetometer for drones & autonomous vehicles
...s a three-axis magnetometer engineered to provide highly stable orientation references over both...

Related Articles

New Drone Magnetometer Delivers Improved Data Quality & Enhanced Ability to Find Subterranean Objects

The Skyfront MagniPhy from Skyfront is a new enclosure and universal attachment mechanism for drones, which improves data quality, efficiency, and safety

Jun 24, 2024
New Magnetometer Released with I/O Expansion Functionalities

Veronte MEX offers a powerful peripheral to ease the reduction of wire in autonomous vehicles, allowing an increased number of devices in the system at the time it adds magnetometer related functionalities

Mar 27, 2023
Iris Automation DAA Solution Used in Large-Scale Magnetometer Survey

Overhead Intelligence has commenced its Extended Visual Line Of Sight plus Beyond Visual Line Of Sight mission for UAV magnetometer surveys across the entire province of Newfoundland and Labrador

Jun 29, 2022
Magnetometer Integration for PX4 UAV Autopilot

PNI Sensor has released an application note detailing how its RM3100 geomagnetic sensor can be integrated with the PX4 autopilot...

Sep 28, 2021
Magnetometer Calibration for Inertial Systems

Inertial Labs has released a technical article outlining the role of magnetometers in inertial navigation systems (INS) and the various...

Oct 03, 2020
Teledyne Gavia AUV Integrates High-Accuracy Magnetometer

Teledyne Gavia, a developer of marine survey solutions, has announced that it has integrated Marine Magnetics’ Explorer AUV magnetometer with...

Apr 20, 2018
Whitepaper: Integrating Magnetometers into MEMS-Based Inertial Systems

Sparton Navigation and Exploration, a developer of advanced inertial sensor systems, has released a technical whitepaper that discusses techniques to...

Apr 10, 2017
Silver Partners
UAV Navigation-Grupo Oesía

Guidance, Navigation & Control Solutions (GNC) for Drones & UAVs

Embention

UAV Autopilot Flight Controllers, Ground Stations, ESC Controllers & Tracking Antennas

Related Categories