Energid to Develop Simulation for Lunar and Planetary Robotics

By Mike Ball / 21 Jul 2015

Smart Sourcing for Unmanned Systems

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Follow UST
Actin Software

Energid Technologies Actin Software

Energid Technologies Corporation, a developer of robotic systems and technologies, has announced that NASA has provided the company with funding to develop a new robot simulation that accommodates uncertainty and discovers exceptional behaviors during mission planning.

Even in the best case when they are well understood, conditions on lunar and planetary surfaces can be hard to duplicate physically. This makes digital simulations an essential tool during mission planning and development. Simulation software can be used to study the effects of changes in terrain, lighting, reflectance, and other environmental factors on mission success.

In a typical space mission, though, many conditions are poorly understood. There may, for example, be limited understanding of soil—or regolith—properties before contact on a lunar mission. Addressing this requires special conceptual and mathematical tools. Parameters must be randomized to capture potential outcomes, and results must be optimized to discover the corner cases and unexpected outcomes that could impact a mission.

“Our approach is to apply concepts from game theory and stochastic optimization to deeply simulate NASA’s robotic missions,” said Ryan Penning, project manager on the program. “The result will be a breakthrough ability to reason about uncertain environments and understand the extremes of what a robot can do.”

Energid Technologies, through its Actin software, brings enabling tools and capability to the project. Actin supports randomizing simulations of all types of robotic systems. It has physics-based models for articulated dynamics, contact dynamics, sensor simulation, and communications. In this effort, Actin, and its stochastic simulation capability, will be extended to specialize this capability for new NASA space applications.

Actin will be tailored to the space environment by modeling lunar regolith with highly parallelized particle models implemented on Graphical Processing Units (GPUs). GPUs allow execution of high-fidelity simulation in real time on common computer hardware. Actin will also be tailored to support the appearance of lunar and planetary surfaces. This will allow high fidelity simulation of cameras and other sensors.

“Actin already provides powerful tools for camera, lidar, radar, and other sensors on all types of robots, from oil exploration to collaborative manufacturing,” said James English, CTO at Energid. “This project will enable high-fidelity extensions for space environments.”

The technology will be further commercialized by applying it to configure robotic systems and workcells on Earth. There is a pressing need for easier robotic programming to lower costs and empower people and businesses untrained in robotics but familiar with application domains where robots can contribute.

“Much of the cost of applying robots lies in configuring environments and workcells,” said Neil Tardella, CEO at Energid. “The prediction and simulation technology developed under this project will lower the cost of fielding robots and expand their application.”

Posted by Mike Ball Mike Ball is our resident technical editor here at Unmanned Systems Technology. Combining his passion for teaching, advanced engineering and all things unmanned, Mike keeps a watchful eye over everything related to the unmanned technical sector. With over 10 years’ experience in the unmanned field and a degree in engineering, Mike’s been heading up our technical team here for the last 8 years. Connect & Contact

Latest Articles

SightLine Software & Hardware Advancements for Enhanced ISR Applications

SightLine Applications LLC introduces the 3.9.2 update, enhancing the 4100 video processor and unveiling the ultra-compact 1710 processor for advanced ISR applications

Jul 16, 2025
Silicon Sensing’s MEMS Technology Enhances Vehicle Localization for Autonomous Driving

The University of Toronto investigated approaches to determining spatial awareness in autonomous vehicles, with Silicon Sensing's DMU41 IMU succeeding in cost-effectiveness, reliability and accuracy

Jul 16, 2025
CHC Navigation Launches AU20 MMS for Precision LiDAR Mapping of Infrastructure

CHC Navigation (CHCNAV) has unveiled the AU20 MMS, a vehicle-mounted mobile mapping system designed for accurate and efficient collection of 3D spatial data

Jul 16, 2025
ZIYAN to Highlight UAV Coordination & Unmanned Helicopter Solutions at IDEF 2025

ZIYAN Tech will unveil its latest combat UAV technologies at IDEF 2025, highlighting advanced swarm coordination, ISR systems, and unmanned helicopter capabilities

Jul 16, 2025
Boosting First Responder Drones with Advanced BVLOS Technology

DroneSense and MatrixSpace partner to enhance BVLOS capabilities, accelerating the safe, scalable use of drones in public safety and Drone as First Responder missions

Jul 16, 2025
TEKEVER Advancing Defense & Civil Security Drones with Cahors Centre of Excellence

Tekever will establish a new dual-use Centre of Excellence in Cahors, France to develop, test, integrate and industrialize autonomous defense and security technologies

Jul 16, 2025

Featured Content

SBG Systems Evaluates INS Performance in GNSS-Denied Marine Applications

SBG Systems evaluates the performance of its INS solutions in GNSS-denied marine environments, comparing system accuracy with and without DVL and warm-up support

Jul 14, 2025
USAF Uses Inertial Labs Drone Lidar for Tree Obstruction Survey

The US Air Force successfully used Inertial Labs drone Lidar and cloud software to quickly map tree obstructions at Joint Base Lewis-McChord (JBLM), improving airfield safety

Jul 11, 2025
New UAV to Combine Solar Hydrogen & Battery Power for Extended Flight

XSun and H3 Dynamics are developing the first UAV powered by solar, hydrogen, and batteries, aiming to deliver zero-emission, long-endurance unmanned flight

Jul 07, 2025
Advancing Unmanned Systems Through Strategic Collaboration UST works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive unmanned systems capabilities forward.