Small Autonomous Drone Developed for Maritime Operations

MITRE partnered with the Office of Naval Research (ONR) to develop the Hopper unmanned aerial vehicle (UAV) that can operate at sea for extended periods and in swarms for expanded capabilities in defense and marine research By Joe Macey / 02 Feb 2024
Hopper Drone to Transform Maritime Missions
Follow UST

MITRE has partnered with the U.S. Navy to develop a small unmanned aerial vehicle (UAV) with potential in the maritime domain.

The low-cost drone can operate autonomously at sea for an extended period and support a wide range of operations, from defense to marine biology to meteorology, and beyond.

MITRE’s Hopper UAV prototype, developed in collaboration with the Office of Naval Research (ONR), offers a small, intelligent, autonomous aerial system for maritime environments. Beyond U.S. Navy campaigns, these include non-military missions like search and rescue, monitoring for illicit activity (e.g., illegal fishing), and detecting meteorological events.

When ONR asked MITRE to help develop the intelligence, surveillance, reconnaissance-capable platform, they delivered a tall order, a cost-effective system that could function autonomously across dynamic ocean environments, carry a range of lower-power passive sensors, and use commercial electronic systems. MITRE’s engineers designed and fabricated the prototype in less than 24 months.

“It’s been inspiring to see Hopper rapidly develop from an idea to flight-capable hardware,” said ONR’s Lee Mastroianni, Program Officer for advanced autonomous systems. “The MITRE team provided a wealth of insight and innovation in support of our naval objectives.”

Hopper made its public debut in November 2023 at the Office of Science and Technology Policy’s “American Possibilities: A White House Demo Day.” Of the 45 scientific and technological innovations at the event, Hopper was one of eight connected to national security.

Though in its early stages, Hopper demonstrates strong promise to meet this state-of-art criteria. The platform evolved out of the National Security Engineering Center, the federally funded R&D center MITRE operates for Department of Defense. The MITRE-ONR team designed the system using computer-aided design (CAD) and advanced simulation software. This allowed them to rapidly iterate on various elements and produce the UAV’s airframe largely through advanced but low-cost techniques such as 3D printing. The design includes small commercial solar cells on the wings’ surface to allow the system to regenerate power while in flight and at rest.

The MITRE-ONR team also brought in a fresh perspective, working with students from the U.S. Naval Academy. The midshipmen contributed to Hopper’s design, providing key insights from their operations research Capstone project.

“This technology works primarily to augment existing maritime surveillance platforms,” said Conor Mahoney, MITRE’s expeditionary group leader. “Where normally you’d have to risk a crewed asset or an expensive uncrewed asset to maintain cognizance over a wide ocean area, Hopper can do so at a fraction of the cost—and free up those other assets.”

Moreover, Hopper demonstrates strength in numbers, with multiple systems operating as a team, or “swarm.” The swarm can cover large areas and collectively direct its elements to maneuver around designated ocean areas. This allows swarms of Hoppers to remain on station when ocean currents, waves, or winds might otherwise push them off course.

These versatile systems could fulfill a variety of missions, from signals monitoring to tsunami warning to marine-life biological research, and more. Hopper’s only limitations lie in payload size and power requirements. The MITRE team is said to be experimenting with integrating miniature radios and satellite transceivers to enable the UAV to communicate from maritime environments anywhere in the world.

With its unique capabilities, this small platform is poised to make a big impact in both defense and civil applications.

“We’re working to evolve Hopper with expanded payload capacity, longer flight duration, and shorter times between recharges—to create an even more powerful platform,” Mahoney added.

Posted by Joe Macey Connect & Contact