Liquid Hydrogen Fuel System for UAS Demonstrated

The demonstrator supplied the fuel cell power system with hydrogen at the required temperature and pressure, over a range of electrical loads typical of a UAS SAR mission By Mike Ball / 29 Nov 2022
Liquid hydrogen fuel system for drones

GKN Aerospace has confirmed that it has successfully delivered a ground-based demonstrator of a liquid hydrogen aircraft fuel system. The demonstrator was designed, built and tested in collaboration with Filton Systems Engineering, under the Innovate UK-funded Safe Flight project. The goal of the project was to investigate the feasibility of using a liquid hydrogen fuel source to increase the endurance of a search and rescue uncrewed aerial system (UAS) concept.

The project enabled GKN to understand and address many of the safety concerns raised by the introduction of such a novel fuel. Integrated fuel tank design and distribution solutions were developed, including vaporisation and conditioning of the liquid hydrogen. The performance of the fuel system was verified by coupling it with a proton exchange membrane (PEM) fuel cell stack, representative of the type that could be installed on a future zero emission aircraft. The project demonstrated successful storage and management of liquid hydrogen, supplying the fuel cell power system with hydrogen at the required temperature and pressure over a range of electrical loads typical of a UAS search and rescue mission.

Key outcomes of the project include development of safe system design, manufacturing knowledge, operational knowledge for liquid hydrogen fuel systems, hydrogen fuel system test data, and an adaptable test rig suited to further study of hydrogen components and subsystems.

The Safe Flight project has positioned GKN Aerospace for larger and more complex demonstrations of hydrogen-powered aircraft in the future.

Max Brown, VP of Technology at GKN Aerospace, commented: “We are delighted with the outcome of this project and believe we are very much at the forefront of exploring the challenges in this area. In a single end-end test environment the team have demonstrated fuelling and storage of liquid hydrogen, conditioning and distribution of cryogenic gas, and the use of PEM fuel cells to generate electrical power.”

“While the focus of this work was on a small-scale platform, the achievement is highly aligned with other work we are conducting in programmes such as H2GEAR, where we are delivering propulsion technologies focussed on enabling zero emissions flight.”

Find suppliers & manufacturers of Hydrogen Drones & UAS >> 

Posted by Mike Ball Mike Ball is our resident technical editor here at Unmanned Systems Technology. Combining his passion for teaching, advanced engineering and all things unmanned, Mike keeps a watchful eye over everything related to the unmanned technical sector. With over 10 years’ experience in the unmanned field and a degree in engineering, Mike’s been heading up our technical team here for the last 8 years. Connect & Contact
Latest Articles