Automated AUV Launch and Recovery System Under Development

By Mike Ball / 17 Sep 2020
Follow UST

AUV launched from USV

Thales Australia and Flinders University have entered into a partnership to investigate the development of an automated launch and recovery system for the Bluefin 9 AUVs (automated underwater vehicles) that have been acquired by the Royal Australian Navy as part of its its Deployable Mine Counter Measures program.

Currently, launch and recovery of AUVs from an unmanned surface vehicle (USV) requires human participation, either in the form of direct placement and retrieval from the water or by manual activation from the platform. The study conducted into automated launch and recovery systems will determine the safest methods for removing human operators from the process.

Thales Australia will act as the design authority, working with key stakeholders to ensure that all capability and safety requirements that will enable Royal Australian Navy personnel to execute missions safely are met. Flinders University, an authority in marine environments and autonomy and a key academic partner in the recently announced $15 million TAS-CRC (Trusted Autonomous Systems Cooperative Research Centre) project, will provide subject matter expertise to investigate potential concepts for the Automatic Launch and Recovery System from a USV.

Troy Stephen, Director of Thales Underwater Systems, commented: “The concept of Automatic Launch and Recovery Systems from a USV would revolutionise the current method of deployment. Not only would it completely remove the person from the minefield but it could eliminate many of the current limitations of Unmanned Underwater Vessels (UUVs), such as transit time, battery drain, communications and mission risk. The automation of this process will provide a significant enhancement to the Navy’s capability.”

“This study is an important step forward in Navy’s transition towards autonomy; particularly in the field of mine countermeasures with its defined phases of Detection, Classification, Identification and Neutralisation. The complexity of this shift requires genuine partnership and collaboration between Defence, Industry and Academia and we’re pleased to be working with Flinders University on this crucial study.”

Professor Robert Saint, Deputy Vice-Chancellor (Research) at Flinders University, said: “As a research leader in autonomous marine vehicle systems, we look forward to contributing to strengthening Australia’s sovereign defence capabilities by developing and applying advanced imaging, guidance and control technology for unmanned underwater vehicles engaged in mine counter measure activities. This will open the way to keeping manned vessels and personnel out of dangerous minefields.”

Find suppliers & manufacturers of AUVs >>

Posted by Mike Ball Mike Ball is our resident technical editor here at Unmanned Systems Technology. Combining his passion for teaching, advanced engineering and all things unmanned, Mike keeps a watchful eye over everything related to the unmanned technical sector. With over 10 years’ experience in the unmanned field and a degree in engineering, Mike’s been heading up our technical team here for the last 8 years. Connect & Contact