CMU’s DARPA Challenge Robot has Four Limbs; Moves on Rubberised Tracks

By Caroline Rees / 12 Mar 2013
Follow UST

A team from Carnegie Mellon University’s National Robotics Engineering Center is building a new class of robot to compete in the Defense Advanced Research Projects Agency’s (DARPA) Robotics Challenge — a human-size robot that moves, not by walking, but on rubberized tracks on the extremities of each of its four limbs.

Carnegie Mellon’s CHIMP Robot

Carnegie Mellon’s human-scale CHIMP Robot has four limbs, but moves on treads like a tank

Though the appearance of the CMU Highly Intelligent Mobile Platform, or CHIMP, is vaguely simian, its normal mode of locomotion will be much like that of a tank, with the tracks of all four limbs on the ground. This configuration would offer a particular advantage when moving over debris and rough terrain. But CHIMP also can move on the treads of just two limbs when needed, such as when it must use one or more limbs to open a valve, or to operate power tools.

CHIMP will have to do that and more during the DARPA Robotics Challenge (DRC), in which robots will have human-like capabilities to respond to calamities such as the 2011 Fukushima nuclear plant disaster. Climbing ladders and driving vehicles are among the obstacles robots will face in environments engineered for people.

The NREC entry, Tartan Rescue Team, is one of seven selected by DARPA for DRC Track A, in which each team will develop its own hardware and software. The team has launched a new website, www.tartanrescue.org, with details about CHIMP, team members and sponsors.

CHIMP will be able to perform complex, physically challenging tasks through supervised autonomy. A remote, human operator will make high-level commands controlling the robot’s path and actions, while the robot’s on-board intelligence prevents collisions, maintains stability and otherwise keeps the robot from harm. The robot also will be pre-programmed to execute tasks such as grasping a tool, stepping on a ladder rung or turning a steering wheel without step-by-step direction from the human controller, circumventing the lag between command and execution.

“Humans provide high-level control, while the robot provides low-level reflexes and self-protective behaviors,” said Tony Stentz, NREC director and Tartan Rescue Team leader. “This enables CHIMP to be highly capable without the complexity associated with a fully autonomous robot.”

“This type of robot has tremendous potential,” he added. Such a robot would be suitable for a variety of tasks for which NREC now develops wheeled, tracked and other conventional robots, such as remote inspection and monitoring of hazardous industrial facilities. A unit of Carnegie Mellon’s Robotics Institute, NREC performs advanced applied research and prototyping for commercial and governmental clients.

The human-centered nature of the DRC challenges would seem to favor a dynamically stable humanoid robot, the choice of five of the seven Track A teams, Stentz acknowledged. But his team’s focus on simplicity and dependability led them to choose tracked locomotion.

“When we walk or stand, our brains are actively controlling our balance all of the time,” Stentz noted. This dynamic balance makes people nimble and enables them to run. But it also greatly increases the complexity, computational requirements and energy consumption of a machine. So CHIMP is designed with static stability; it won’t fall down even if it experiences a computer glitch or power failure.

When necessary, however, the operator can control CHIMP’s individual joints, enabling it to adapt its motion to particular circumstances or extricate itself from tight spots.
“In a pinch, it can do anything,” Stentz said.

Posted by Caroline Rees Caroline co-founded Unmanned Systems Technology and has been at the forefront of the business ever since. With a Masters Degree in marketing Caroline has her finger on the pulse of all things unmanned and is committed to showcasing the very latest in unmanned technical innovation. Connect & Contact

Latest Articles

New High-Precision VTOL UAV LiDAR Scanning Solution

Ventus-Tech Robotics' tailsitter VTOL UAV has been integrated with the Yellowscan Mapper+ OEM payload

Jan 17, 2025
Controller Software Enables Pre-Programmed Precision Composite Curing

UAVOS is developing the Controller Software for its Composite Curing Ovens, providing a pre-programmed mode to optimize curing technology precise and efficient processes

Jan 17, 2025
New Connectors & Terminals Released for Drone Applications

ETCO Incorporated has introduced a new range of connectors and terminals for drone operations, provided in a variety of materials and designs

Jan 17, 2025
Autonomous Inland Navigation to Display at XPONENTIAL Europe

Research institute DST will bring its autonomous inland navigation capabilities to XPONENTIAL Europe with ELLA, a pioneering autonomously cruising research vessel

Jan 17, 2025
Choosing the Right Ethernet Switch for GigE Vision Cameras

Explore BotBlox's Ethernet switches for GigE Vision cameras, comparing their suitability for high-performance streaming in drones and embedded platforms

Jan 17, 2025
ZIYAN Expands UAV Technology with F15 VTOL Aircraft

ZIYAN Tech introduces the F15 UAV, a next-gen VTOL drone designed with extended flight time, multi-payload versatility, quick deployment, and advanced features for diverse industry needs

Jan 16, 2025

Featured Content

“Surveillance as a Service” UAV Solution Launched

Volatus Aerospace’s “Surveillance as a Service" solution will use drone technology to provide secure, multi-modal surveillance for faster response times and actionable intelligence

Jan 16, 2025
Aurora & SkyGrid Advance Airspace Management Solutions for UAVs

Aurora Flight Sciences and SkyGrid are set to enhance Advanced Air Mobility (AAM) by collaborating on systems for integrating UAVs into the national airspace

Jan 14, 2025
New Safety System Unveiled for Anzu Raptor Drones

ParaZero has launched the SafeAir Raptor, a parachute safety system for Anzu Robotics’ Raptor and Raptor T drone models that complies with ASTM F3322-22 standards

Jan 08, 2025
How ANELLO’s Disruptive SiPhOG™ Technology is Shaping the Future of Precision Navigation

UST sits down with Dr. Mario Paniccia, CEO at ANELLO Photonics, to learn how Silicon Photonics Optical Gyroscope technology is empowering autonomous systems with cutting-edge navigation solutions

Jan 06, 2025
XPONENTIAL Europe Highlights Autonomous Robotics for Perimeter Security

XPONENTIAL Europe, held in DĂĽsseldorf from 18-20 February 2025, will focus on uncrewed systems and highlight their use for protecting critical infrastructure

Jan 02, 2025
Software-Defined Networking Capability Selected for Attritable Autonomous Systems

Viasat will provide its NetAgility SDN system in support of the US DoD's Replicator initiative

Dec 24, 2024