UAS Airborne Collision Avoidance System Successfully Tested

By Mike Ball / 30 Nov 2018

Smart Sourcing for Unmanned Systems

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Follow UST

Small UAS flying

The Northeast UAS Airspace Integration Research Alliance (NUAIR) has announced the successful demonstration of a new Airborne Collision Avoidance System (ACAS) for small unmanned aircraft systems (UAS). The first-of-it-kind test flights for ACAS sXu (the newest member of the ACAS X family designed specifically for small unmanned aircraft) were held at Griffiss Airport in Rome, New York.

The system is a smaller and more compact version of the next generation ACAS X, an airborne collision avoidance system now under development for large passenger and cargo-carrying aircraft. The tests showed the system has the unique ability to detect and avoid other aircraft, both manned and unmanned. The flight tests were a collaboration between AiRXOS, a GE venture, Fortem Technologies, GE Aviation, GE Global Research, Johns Hopkins University Applied Physics Lab, MIT Lincoln Laboratory, the FAA TCAS Program Office, AX Enterprize, the New York UAS Test Site in Oneida County and NUAIR Alliance.

During flight, detect and avoid capabilities use information from airborne and ground-based sensors to make pilots aware of potential collision risk and provides guidance to ensure a safe outcome. The ACAS sXu system is specifically designed to do this by providing back-up collision avoidance to provide an additional layer of safety beyond existing air traffic control systems and flight procedures.

These features are key toward commercialization of UAVs and urban air mobility. Furthermore, the ACAS tests specifically showed that the system could be run as an airborne system, as well as a cloud-based system inside of the unmanned aircraft systems traffic management (UTM) architecture, with similar detect and avoid abilities.

“This industry collaborative test marks another proud industry first: an airborne detect and avoid (DAA) radar feeding airspace detection data into an onboard ACAS-sXu in live flight and generating resolution advisories to ensure safe avoidance of a potential airborne collision,” said Adam Robertson, Co-Founder at Fortem. “For the first time in history, flight collision threat detection and autonomous avoidance with onboard ACAS-sXu was demonstrated in a sUAS live flight, enabled by the integration of a Fortem TrueView R20 radar.”

In demonstrating this future detect and avoid and UTM capabilities, the partners have shown that new safety measures exist which will support the commercialization of the unmanned aerial vehicle industry.

“Through this successful demonstration, these partners have helped the unmanned systems industry reach another milestone,” said Major General Marke F. “Hoot” Gibson (ret), chief executive officer, NUAIR Alliance. “These collaborative efforts support the research and development critical to the safe integration of unmanned systems in the national airspace. Together we are advancing the industry as a whole and furthering this region’s position as a national leader for UTM technologies.”

The US Federal Aviation Administration (FAA) has led the development of the ACAS family of systems, which is intended to replace the Traffic-Alert and Collision Avoidance Warning System (TCAS) for all aircraft. Working with the FAA, the Massachusetts Institute of Technology’s Lincoln Laboratory and the Johns Hopkins University Applied Physics Laboratory developed the software for ACAS Xa/Xo for large aircraft (published as RTCA DO-385) and ACAS Xu, the version dedicated to large UAS.

“This major advancement in ACAS capability is a testament to the strong partnerships we have forged at Oneida County’s UAS Test Site at Griffiss International Airport,” said Oneida County Executive Anthony J. Picente Jr. “The collaboration and innovation that is taking place in Rome is second to none and continues to propel the UAS industry forward by leaps and bounds.”

Scalable detect and avoid functionality remains the critical impediment to safe operations of UAS. Given operation-viable integrated surveillance, the ACAS X family offers a common framework for collision avoidance across manned and unmanned operations. This most recent flight testing demonstrated that UAS operators can utilize ACAS sXu capabilities not only as vehicle integrated solutions, but also as a service provided by a UTM system. Detect and avoid will eliminate the need to use visual observers in BVLOS operations and lead to more cost-scalable operations. In fact, during testing, a GE developed vehicle configuration was flown beyond visual line of sight (BVLOS) of the pilot, with the longest flight patterns spanning a stretch of 2.15 nm (4 km), as far as 1.34 nm (2.5 km) away from the remote pilot.

Posted by Mike Ball Mike Ball is our resident technical editor here at Unmanned Systems Technology. Combining his passion for teaching, advanced engineering and all things unmanned, Mike keeps a watchful eye over everything related to the unmanned technical sector. With over 10 years’ experience in the unmanned field and a degree in engineering, Mike’s been heading up our technical team here for the last 8 years. Connect & Contact

Latest Articles

Elistair’s Tethered Drone System Integrated into Autonomous Port Security Project

Elistair's tethered drone system will provide continuous surveillance of ports from an autonomous vessel as part of the European SMAUG project

Jun 12, 2025
MEMS DC Accelerometers from SDI Deliver Superior Performance for Unmanned Systems

SDI's MEMS DC accelerometers offer a robust solution for unmanned aerial, ground, and underwater vehicles, providing precise static and dynamic motion sensing, crucial for autonomous navigation, attitude feedback, and structural monitoring

Jun 12, 2025
AWI Completes First Under-Ice Dive in the Arctic with an ecoSUB AUV

The Alfred Wegener Institute (AWI) has completed the first under-ice deployment of ecoSUB's smallest autonomous underwater vehicle (AUV) the ecoSUB-µ5 during a mission in Arctic conditions

Jun 12, 2025
SatLab Geosolutions Introduces HydroBoat 1200MB Integrated USV Survey Solution

SatLab Geosolutions’ new HydroBoat 1200MB combines USV technology and the HydroBeam M2 sonar for real-time 3D surveys, offering fast deployment, high efficiency, and reduced operational costs

Jun 12, 2025
Trillium Unveils Lightweight Imaging System for Medium & Long-Range Reconnaissance

Trillium Engineering introduces the HD45-LV-R, a lightweight, high-performance imaging system designed to enhance LRR and MRR reconnaissance missions for modern defense platforms

Jun 12, 2025
How to Select the Right IMU for UAV Applications

GuideNav outlines the critical considerations for selecting an IMU that matches your UAV’s performance, durability, size, and mission requirements

Jun 12, 2025

Featured Content

Calian GNSS Unveils New Anti-Jamming CRPA with XF+ Filtering

Calian GNSS has introduced the CR8894SXF+, a compact CRPA antenna with in-band null forming and XF+ filtering for resilient GNSS performance in interference-prone environments

Jun 06, 2025
Honeywell Introduces HG3900 Tactical-Grade IMU with Enhanced Sensor Accuracy

Honeywell has introduced the HG3900 IMU, a MEMS-based device with tactical-grade accuracy, offering significant SWaP advantages for precision navigation systems

Jun 05, 2025
TEKEVER Invests £400 Million to Advance UK Defense & Drive AI Innovation

TEKEVER is investing £400 million in UK defense innovation, creating 1,000+ jobs and advancing AI, autonomy, and electronic warfare through its five-year OVERMATCH program

May 29, 2025
Advancing Unmanned Systems Through Strategic Collaboration UST works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive unmanned systems capabilities forward.