High Resolution 3D Sensor for UAV Collision Prevention

By Caroline Rees / 12 May 2012

Smart Sourcing for Unmanned Systems

Discover cutting-edge solutions from leading global suppliers
SUPPLIER SPOTLIGHT
Follow UST
UAV 3D Camera

The 3D camera in the flying robot can identify small objects measuring 20 by 15 centimeters from seven meters away

They can be deployed as additional surveillance resources during major events, or as high-resolution 3D street imaging systems. Intelligent swarms of aerial drones are a universally useful tool for police, crisis managers and urban planners. Special 3D sensors developed by Fraunhofer researchers ensure flawless aerobatics and prevent collisions.

Like a well-rehearsed formation team, a flock of flying robots rises slowly into the air with a loud buzzing noise. A good two dozen in number, they perform an intricate dance in the sky above the seething hordes of soccer fans. Rowdy hooligans have stormed the field and set off flares. Fights are breaking out all over, smoke is hindering visibility, and chaos is the order of the day. Only the swarm of flying drones can maintain an overview of the situation. These unmanned aerial vehicles (UAVs) are a kind of mini-helicopter, with a wingspan of around two meters. They have a propeller on each of their two variable-geometry side wings, which lends them rapid and precise maneuverability. In operation over the playing field, their cameras and sensors capture urgently-needed images and data, and transmit them to the control center. Where are the most seriously injured people? What’s the best way to separate the rival gangs? The information provided by the drones allows the head of operations to make important decions more quickly, while the robots form up to go about their business above the arena autonomously – and without ever colliding with each other, or with any other obstacles.

A CMOS sensor developed by researchers at the Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg lies at the heart of the anti-collision technology. “The sensor can measure three-dimensional distances very efficiently,” says Werner Brockherde, head of the development department. Just as in a black and white camera, every pixel on the sensor is given a gray value. “But on top of that,” he explains, “each pixel is also assigned a distance value.” This enables the drones to accurately determine their position in relation to other objects around them.

Sensor has a higher resolution than radar

The distance sensor developed by the IMS offers significant advantages over radar, which measures distances using reflected echoes. “The sensor has a much higher local resolution,” says Brockherde. “Given the near-field operating conditions, radar images would be far too coarse.” The flying robots are capable of identifying even small objects measuring 20 by 15 centimeters at ranges of up to 7.5 meters. Moreover, this distance information is then transmitted at the very impressive rate of 12 images per second.

Even when there is interfering light, for example when a drone is flying directly into the sun, the sensor will deliver accurate images. It operates according to the time-of-flight (TOF) process, whereby light sources emit short pulses that are reflected by objects and bounced back to the sensor. In order to prevent over-bright ambient light from masking the signal, the electronic shutter only opens for a few nanoseconds. In addition, the sensor also takes differential measurements, in which the first image is captured using ambient light only, a second is taken using the light pulse as well, and the difference between the two determines the required output signal. “All of this happens in real time,” adds Brockherde.

The 3D distance sensors are built into cameras manufactured by TriDiCam, a spin-off company of Fraunhofer IMS. Jochen Noell, TriDiCam’s managing director, admits: “This research project has presented us with new challenges as regards ambient operating conditions and the safety of the sensor technology.” The work falls under the AVIGLE project, one of the winners of the ‘Hightech.NRW’ cutting-edge technology competition which receives funding from both the Land of North Rhine-Westphalia and the EU. The IMS engineers will be presenting their sensor technology at the Fraunhofer CMOS Imaging Workshop in Duisburg on June 12 and 13 this year.

Conducting intelligent aerial surveillance of major events is not the only intended use for flying robots. They could also be of benefit to disaster relief workers, and likewise to urban planners, who could utilize them to produce detailed 3D models of streets or to inspect roofs in order to establish their suitability for solar installations. Whether deployed to create virtual maps of difficult-to-access areas, to monitor construction sites or to measure contamination at nuclear power plants, these mini UAVs could potentially be used in a wide range of applications, obviating the need for expensive aerial photography and/or satellite imaging.

Posted by Caroline Rees Caroline co-founded Unmanned Systems Technology and has been at the forefront of the business ever since. With a Masters Degree in marketing Caroline has her finger on the pulse of all things unmanned and is committed to showcasing the very latest in unmanned technical innovation. Connect & Contact

Latest Articles

How to Balance Drone Propellers by Adding & Removing Material

Tyto Robotics explains how adding or removing material from drone propellers can improve flight stability, precision, and system performance

May 19, 2025
TEKEVER Supports RAF Programme with VTOL UAS for Electronic Warfare

TEKEVER’s AR3 uncrewed aerial system is supporting the UK’s StormShroud programme, advancing electronic warfare capabilities through modular integration and collaborative defence innovation

May 19, 2025
New Long-Endurance VTOL Drone to be Showcased at Xponential 2025

At Xponential 2025, Unmanned Aerospace will display their GH-4, a long-endurance vertical take-off and landing (VTOL) rotorcraft with a patented Automatic Pitch System (APS) and modular capabilities

May 19, 2025
Advanced Turnkey UAS Solutions for Civilian & Defense Applications

Altus LSA's multirotor and fixed-wing drones have been selected by leading clients including NATO, FRONTEX, and the European Maritime Safety Agency

May 19, 2025
AGISTAR Releases Modular USV for Aquatic Survey Applications

AGISTAR introduces the BX-USV II, a compact modular platform engineered for aquatic data collection, environmental monitoring, hydrographic surveying, and infrastructure inspection in shallow and inland waters

May 19, 2025
New Line of Combat-Proven USVs Enhances Maritime Operations

Red Cat Holdings expands into maritime autonomy with a new line of combat-proven USVs, enhancing multi-domain capabilities for modern naval and joint-force operations

May 19, 2025

Featured Content

WarrenUAS Secures FAA 44807 Exemption, Expanding Large UAS Training Capabilities

WarrenUAS has received FAA 44807 approval to train students on unmanned aerial systems weighing over 55 pounds in the NAS, placing it among only five U.S. organizations with this clearance, and expanding its national training leadership

May 15, 2025
Product Spotlight: Durable Lightweight Lithium-Ion Batteries for UAVs

American Lithium Energy (ALE)'s energy-dense lithium-ion battery cells combine high power output with built-in safety features, ideal for UAV and eVTOL applications in challenging environments

May 14, 2025
SAE Media Group Releases Agenda for Counter UAS Middle East & Africa 2025

The inaugural Counter UAS Middle East & Africa 2025 will gather global defense leaders in Amman to explore threats, technologies, and strategies shaping regional drone defense

May 13, 2025
Advancing Unmanned Systems Through Strategic Collaboration UST works with major OEMs to foster collaboration and increase engagement with SMEs, to accelerate innovation and drive unmanned systems capabilities forward.