What is the Pedestrian Dead Reckoning Accuracy in Today's MEMS Sensors?

Becky Oh President & CEO

Who is PNI Sensor Corporation?

PNI Sensor Corporation founded in 1987

- HQ in Santa Rosa, CA with global distribution channels
- Patents and IP in magnetic sensor technology, sensor fusion and indoor positioning tracking algorithms
- Expertise in harnessing and fusing sensor data into useful military, scientific and consumer applications

PNI's Sensor Fusion and Sensing Expertise

Agenda

- What is Pedestrian Dead Reckoning (PDR)?
- PDR error analysis:
 - Monte Carlo model
 - Sensitivity Analysis
 - Accuracy Prediction
- Hybrid PDR + RF:
 - Mapping
 - Localization
- Conclusions / Final Thoughts

What is Pedestrian Dead Reckoning (PDR)?

DEAD RECKONING AT SEA

- PDR is a stand-alone inertial solution used to supplement other navigation systems with external reference points
 - Using inertial sensors in today's mobile devices
 - Key technology for Indoor navigation

http://timeandnavigation.si.edu/multimedia-asset/dead-reckoning-at-sea

Why Pedestrian Dead Reckoning (PDR)?

- Motion sensing technologies have become ubiquitous
 - Building blocks for PDR
 - Requires no infrastructure

 ABI Research predicts that a hybrid of Wi-Fi / Bluetooth / RF based cellular technologies and sensor fusion solutions for indoor location will be available in over 900 million units in 2018

Why Pedestrian Dead Reckoning (PDR)?

Massive Market Opportunity

Total Indoor Location Application Market

Combines Location-Based Services & Location-Enabled Services Application Markets (Source: ABI Research, "Indoor Location Smartphone Applications", May 21, 2013)

Framing the Problem to Model PDR Accuracy

Note: Each Truth vector has 1363 steps (about 1 km)

NAVIGATION

Background On Our Monte Carlo Model

- PDR initialization errors
 - starting position & starting orientation offset errors
- Step identification errors
 - false positive & negative step probability per step
- Step length errors
 - zero mean step length errors
 - non-zero mean step length errors
- Gyroscope errors
 - DOT error from Gyro bias calibration offset (*i.e.*, residual bias)
 - DOT error from gyro scale factor errors
 - DOT error from gyro angular random walk (ARW)
 - DOT error from gyro rate random walk (RRW)
- Direction of Travel (DOT) errors
 - zero mean DOT errors
 - non zero mean DOT errors

Parameters for Monte Carlo Model

X Starting Position
Y Starting Position
Probability of False Step
Probability of Missed Step
Average Step Length
Step Length Variation (Zero mean)
Step Length Offset
Time between steps
DOT Uncertainty (Gyro Scale Factor Error)
DOT: Gyro Bias ARW
DOT: Gyro Bias Offset (Cal error)
DOT: Gyro Bias RRW (offset error variation)
DOT Uncertainty (Other zero mean)
DOT Uncertainty (offset)
Initial X Position Offset Error
Initial Y Position Offset Error
DOT Initial Heading Offset Error
Truth Vector ID

0.0	m
0.0	m
0.00	%
0.00	%
0.762	m
7.50	% of step length
0.00	% of step length
0.60	seconds
0.200	%
0.00100	deg/s
-0.00100	deg/s
0.00010	deg/s
7.50	degrees
0.20	degrees/step
0.20	m
0.20	m
0.50	degrees
2	חו

Randomization validation: step length @ 1 m and step length variation @ 5%

 \Rightarrow Randomization utilized is about +/- 3σ of limits

What accuracy is possible for Truth ID2?

Recall: starting offset is 0.2 m for X and 0.2 m for Y with 0.5 degrees DOT offset

Ending error % was 0.27% Maximum error % was 4.91% (\Rightarrow start offset) Average error % was 1.15%

Modeling: Sensitivity Analysis

PDR initialization errors Step identification errors Step length errors Gyro errors DOT errors

Sensitivity Analysis: PDR Heading Initialization Error

 \Rightarrow Must be about 0.50 degrees or less

Sensitivity Analysis: False Negative & Positive Step Probability

⇒ Need < 0.1% False Positive and Negative Step Probability

Sensitivity Analysis: Step Length Variation % and Offset %

Cho, Dae-Ki, et al. "Autogait: A mobile platform that accurately estimates the distance walked," March 2010.

15

NAVIGATION

Sensitivity Analysis: Gyro Scale Factor and Gyro Bias Offset

 \Rightarrow Static gyro bias must be resolved to within 0.001 degrees/s (3.6 degrees/hr) ⇒ Must be below 0.1% error
 which is < 2 degrees after 5x
 360 degree revolutions

Sensitivity Analysis: Gyro Angular Random Walk and Rate Random Walk

6 25 Truth Truth Vector Vector ID ID Position Error % Distance Traveled Position Error % Distance Traveled 1 1 20 2 3 3 4 5 5 15 6 6 7 3 • 7 ÷ 8 8 10 2 0.01 0.05 0.10 1.00 0.000 angular random walk (degrees/s)

ARW

0.002 0.004 0.006 0.008 0.010 Rate Random Walk (degrees/second)

 \Rightarrow For 1 % position error % distance, must be below ~0.05 degrees / s (i.e., < 180 degrees/hr)

 \Rightarrow For 1% position error % distance, must be below ~ 0.001 degrees / s (i.e., < 3.6 degrees/hr)

RRW

Sensitivity Analysis: Zero Mean DOT Variation and DOT Degrees per step Offset Error

PDR with Device to Body Frame Transitions

Modeling of Combined Errors for Three Scenarios

Model Parameters	Units	Simulation Scenario 1	Simulation Scenario 2	Simulation Scenario 3
Probability of False Step	%	0	0.1	0.2
Probability of Missed Step	%	0	0.1	0.2
Step Length: Variation	% of step length	5	7.5	10
Step Length: Offset	% of step length	0.2	0.4	0.5
Time between steps	seconds	0.6	0.6	0.6
DOT Uncertainty: Gyro Scale Factor	%	0.05	0.1	0.2
DOT Uncertainty: Gyro Bias ARW	deg/s	0.001	0.01	0.1
DOT Offset: Gyro Bias Offset	deg/s	0.0005	0.001	0.001
DOT Offset: Gyro Bias RRW	deg/s	0	0.0001	0.01
DOT Uncertainty: zero mean	degrees	5	7.5	10
DOT Offset: Step Direction	degrees/step	0.1	0.2	0.2
Initial X Position Offset Error	m	0.1	0.2	0.2
Initial Y Position Offset Error	m	0.1	0.2	0.2
DOT Offset: Initial Heading Offset Error	degrees	0.1	0.5	1
Simulations	count	3500	3500	3500
Median Position Error % Distance	% Distance Traveled	0.28	0.69	2.39
Median Heading Error	degrees	1.29	2.75	10.7

Known Challenges with BLE Ecosystem

- The user may not know the location of the beacons in advance
 - In iOS, the beacon UUID is not available unless you know the UUID a priori
 - For Gimbal Inc. beacons (spinoff from Qualcomm), they use a rolling UUID thereby forcing developers to use their SDK to get beacons to work properly
 - Both makes it challenging to map an unknown physical Beacon and its properties to a unique identifier (and store the data in the Cloud)

Explore: Is device and transmitter heterogeneity an opportunity?

 \Rightarrow 30 feet facing West looks like 10 feet facing North

Particle Filter Description

1. Initialization:

Initialize particles, \vec{x}_0^i , i = 1, ..., N to approximate the posterior distribution, where N is the number of particles.

Our state vector, \vec{x}_k , is comprised of the position and orientation at step k: latitude, longitude, and heading

$$\vec{x} = \begin{pmatrix} lat. \\ long. \\ \theta \end{pmatrix}$$

- 2. Motion update (prediction): Update the particles with pdr step
- 3. Measurement update Update weights and normalize
- 4. Resampling:

Randomly replace samples with a probability determined by weights

5. Return to motion update upon new step

 \vec{x}_0^i

Mapping: BLE Beacon Positions using PDR

– PDR output

Distances in feet

Beacon 5979: truth: [6,-36] estimate: [6.689, -34.063] stddev: [0.528, 1.459]

Beacon 16732: truth: [-6,-12] estimate: [-6.274, -12.060] stddev: [1.824, 0.341]

Beacon 18529: truth: [0,12] estimate: [2.226, 15.211] stddev: [2.683, 1.144]

Beacon 14939: truth: [6,-6] estimate: [6.042, -6.115] stddev: [1.68, 1.046]

Localization: Correcting PDR Initialization Errors using BLE RSSI

- Truth Path
 PDR only (w/ PDR initialization errors of -3.6 ft and 18 degrees error)
- · Particle Filter Output

Conclusions / Closing Thoughts

- Need device calibration for better than 1% position error.
- Error sources which result in offsets are most important
 - DOT offsets more important than step length offsets
- PDR heading initialization error needs to be low for indoor navigation in the earth coordinate frame
- Device to body frame transitions are key
- PDR accuracy scores must also reflect the PDR initialization errors

Conclusions / Closing Thoughts Con't

- BLE RSSI works OK inside 10 feet
- But need a local BLE properties cloud service
- A particle filter looks like a promising approach for Mapping and Hybrid Co-Localization
- PDR could be used to crowd source mapping BLE beacons
- PDR heading initialization offset error can be reduced with BLE beacons

PNI Sensor 2331 Circadian Way Santa Rosa, CA 95407 www.pnicorp.com (707) 566-2260 support@pnisensor.zendesk.com

